Nonsplitting Subset of $\mathscr{P}_\kappa(\kappa^+)$
Gitik, Moti
J. Symbolic Logic, Tome 50 (1985) no. 1, p. 881-894 / Harvested from Project Euclid
Assuming the existence of a supercompact cardinal, we construct a model of ZFC + (There exists a nonsplitting stationary subset of $\mathscr{P}_|kappa(\kappa^+)$). Answering a question of Uri Abraham [A], [A-S], we prove that adding a real to the world always makes $\mathscr{P}_{\aleph_1}(\aleph_2) - V$ stationary
Publié le : 1985-12-14
Classification: 
@article{1183741965,
     author = {Gitik, Moti},
     title = {Nonsplitting Subset of $\mathscr{P}\_\kappa(\kappa^+)$},
     journal = {J. Symbolic Logic},
     volume = {50},
     number = {1},
     year = {1985},
     pages = { 881-894},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183741965}
}
Gitik, Moti. Nonsplitting Subset of $\mathscr{P}_\kappa(\kappa^+)$. J. Symbolic Logic, Tome 50 (1985) no. 1, pp.  881-894. http://gdmltest.u-ga.fr/item/1183741965/