Two Weak Consequences of $0^#$
Gitik, M. ; Magidor, M. ; Woodin, H.
J. Symbolic Logic, Tome 50 (1985) no. 1, p. 597-603 / Harvested from Project Euclid
It is proven that the following statement: "there exists a club $C \subseteq \kappa$ such that every $\alpha \in C$ is an inaccessible cardinal in L and, for every $\delta$ a limit point of $C, C \cap \delta$ is almost contained in every club of $\delta$ of $L$" is equiconsistent with a weakly compact cardinal if $\kappa = \aleph_1$, and with a weakly compact cardinal of order 1 if $\kappa = \aleph_2$.
Publié le : 1985-09-14
Classification: 
@article{1183741898,
     author = {Gitik, M. and Magidor, M. and Woodin, H.},
     title = {Two Weak Consequences of $0^\#$},
     journal = {J. Symbolic Logic},
     volume = {50},
     number = {1},
     year = {1985},
     pages = { 597-603},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183741898}
}
Gitik, M.; Magidor, M.; Woodin, H. Two Weak Consequences of $0^#$. J. Symbolic Logic, Tome 50 (1985) no. 1, pp.  597-603. http://gdmltest.u-ga.fr/item/1183741898/