The Ordered Field of Real Numbers and Logics with Malitz Quantifiers
Rapp, Andreas
J. Symbolic Logic, Tome 50 (1985) no. 1, p. 380-389 / Harvested from Project Euclid
Let $\Re = (\mathbf{R}, + ^\mathbf{R}, \ldots)$ be the ordered field of real numbers. It will be shown that the $L(Q^n_1\mid n \geq 1)$-theory of $\Re$ is decidable, where $Q^n_1$ denotes the Malitz quantifier of order $n$ in the $\aleph_1$-interpretation.
Publié le : 1985-06-14
Classification: 
@article{1183741843,
     author = {Rapp, Andreas},
     title = {The Ordered Field of Real Numbers and Logics with Malitz Quantifiers},
     journal = {J. Symbolic Logic},
     volume = {50},
     number = {1},
     year = {1985},
     pages = { 380-389},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183741843}
}
Rapp, Andreas. The Ordered Field of Real Numbers and Logics with Malitz Quantifiers. J. Symbolic Logic, Tome 50 (1985) no. 1, pp.  380-389. http://gdmltest.u-ga.fr/item/1183741843/