Quelques Precisions sur la D.O.P. et la Profondeur d'Une Theorie
Lascar, D.
J. Symbolic Logic, Tome 50 (1985) no. 1, p. 316-330 / Harvested from Project Euclid
We give here alternative definitions for the notions that S. Shelah has introduced in recent papers: the dimensional order property and the depth of a theory. We will also give a proof that the depth of a countable theory, when defined, is an ordinal recursive in $T$.
Publié le : 1985-06-14
Classification: 
@article{1183741835,
     author = {Lascar, D.},
     title = {Quelques Precisions sur la D.O.P. et la Profondeur d'Une Theorie},
     journal = {J. Symbolic Logic},
     volume = {50},
     number = {1},
     year = {1985},
     pages = { 316-330},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/1183741835}
}
Lascar, D. Quelques Precisions sur la D.O.P. et la Profondeur d'Une Theorie. J. Symbolic Logic, Tome 50 (1985) no. 1, pp.  316-330. http://gdmltest.u-ga.fr/item/1183741835/