Adjoining Dominating Functions
Baumgartner, James E. ; Dordal, Peter
J. Symbolic Logic, Tome 50 (1985) no. 1, p. 94-101 / Harvested from Project Euclid
If dominating functions in $^\omega\omega$ are adjoined repeatedly over a model of GCH via a finite-support c.c.c. iteration, then in the resulting generic extension there are no long towers, every well-ordered unbounded family of increasing functions is a scale, and the splitting number $\mathfrak{s}$ (and hence the distributivity number $\mathfrak{h}$) remains at $\omega_1$.
Publié le : 1985-03-14
Classification: 
@article{1183741779,
     author = {Baumgartner, James E. and Dordal, Peter},
     title = {Adjoining Dominating Functions},
     journal = {J. Symbolic Logic},
     volume = {50},
     number = {1},
     year = {1985},
     pages = { 94-101},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183741779}
}
Baumgartner, James E.; Dordal, Peter. Adjoining Dominating Functions. J. Symbolic Logic, Tome 50 (1985) no. 1, pp.  94-101. http://gdmltest.u-ga.fr/item/1183741779/