A type-structure of partial effective functionals over the natural numbers, based on a canonical enumeration of the partial recursive functions, is developed. These partial functionals, defined by a direct elementary technique, turn out to be the computable elements of the hereditary continuous partial objects; moreover, there is a commutative system of enumerations of any given type by any type below (relative numberings). By this and by results in [1] and [2], the Kleene-Kreisel countable functionals and the hereditary effective operations (HEO) are easily characterized.