Definable Structures in the Lattice of Recursively Enumerable Sets
Herrmann, E.
J. Symbolic Logic, Tome 49 (1984) no. 1, p. 1190-1197 / Harvested from Project Euclid
It will be shown that in the lattice of recursively enumerable sets one can define elementarily with parameters a structure isomorphic to $(\sum^0_4, \sum^0_3)$, i.e. isomorphic to the lattice of $\sum^0_4$ sets together with a unary predicate selecting out exactly the $\sum^0_3$ sets.
Publié le : 1984-12-14
Classification: 
@article{1183741698,
     author = {Herrmann, E.},
     title = {Definable Structures in the Lattice of Recursively Enumerable Sets},
     journal = {J. Symbolic Logic},
     volume = {49},
     number = {1},
     year = {1984},
     pages = { 1190-1197},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183741698}
}
Herrmann, E. Definable Structures in the Lattice of Recursively Enumerable Sets. J. Symbolic Logic, Tome 49 (1984) no. 1, pp.  1190-1197. http://gdmltest.u-ga.fr/item/1183741698/