On the Period of Sequences $(A^n(p))$ in Intuitionistic Propositional Calculus
Ruitenburg, Wim
J. Symbolic Logic, Tome 49 (1984) no. 1, p. 892-899 / Harvested from Project Euclid
In classical propositional calculus for each proposition $A(p)$ the following holds: $\vdash A(p) \leftrightarrow A^3(p)$. In this paper we consider what remains of this in the intuitionistic case. It turns out that for each proposition $A(p)$ the following holds: there is an $n \in \mathbf{N}$ such that $\vdash A^n(p) \leftrightarrow A^{n + 2}(p)$. As a byproduct of the proof we give some theorems which may be useful elsewhere in propositional calculus.
Publié le : 1984-09-14
Classification: 
@article{1183741629,
     author = {Ruitenburg, Wim},
     title = {On the Period of Sequences $(A^n(p))$ in Intuitionistic Propositional Calculus},
     journal = {J. Symbolic Logic},
     volume = {49},
     number = {1},
     year = {1984},
     pages = { 892-899},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183741629}
}
Ruitenburg, Wim. On the Period of Sequences $(A^n(p))$ in Intuitionistic Propositional Calculus. J. Symbolic Logic, Tome 49 (1984) no. 1, pp.  892-899. http://gdmltest.u-ga.fr/item/1183741629/