Idempotent Ideals on Abelian Groups
Pelc, Andrzej
J. Symbolic Logic, Tome 49 (1984) no. 1, p. 813-817 / Harvested from Project Euclid
An ideal $I$ defined on a group $G$ is called idempotent if for every $A \in I, \{g \in G: Ag^{-1} \not\in I\} \in I$. We show that a countably complete idempotent ideal on an abelian group cannot be prime but may have strong saturation properties.
Publié le : 1984-09-14
Classification: 
@article{1183741621,
     author = {Pelc, Andrzej},
     title = {Idempotent Ideals on Abelian Groups},
     journal = {J. Symbolic Logic},
     volume = {49},
     number = {1},
     year = {1984},
     pages = { 813-817},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183741621}
}
Pelc, Andrzej. Idempotent Ideals on Abelian Groups. J. Symbolic Logic, Tome 49 (1984) no. 1, pp.  813-817. http://gdmltest.u-ga.fr/item/1183741621/