A Minimal Degree Which Collapses $\omega_1$
Carlson, Tim ; Kunen, Kenneth ; Miller, Arnold W.
J. Symbolic Logic, Tome 49 (1984) no. 1, p. 298-300 / Harvested from Project Euclid
We consider a well-known partial order of Prikry for producing a collapsing function of minimal degree. Assuming $MA + \neq CH$, every new real constructs the collapsing map.
Publié le : 1984-03-14
Classification: 
@article{1183741495,
     author = {Carlson, Tim and Kunen, Kenneth and Miller, Arnold W.},
     title = {A Minimal Degree Which Collapses $\omega\_1$},
     journal = {J. Symbolic Logic},
     volume = {49},
     number = {1},
     year = {1984},
     pages = { 298-300},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183741495}
}
Carlson, Tim; Kunen, Kenneth; Miller, Arnold W. A Minimal Degree Which Collapses $\omega_1$. J. Symbolic Logic, Tome 49 (1984) no. 1, pp.  298-300. http://gdmltest.u-ga.fr/item/1183741495/