The Axiom of Determinancy Implies Dependent Choices in $L(\mathbf{R})$
Kechris, Alexander S.
J. Symbolic Logic, Tome 49 (1984) no. 1, p. 161-173 / Harvested from Project Euclid
We prove the following Main Theorem: $ZF + AD + V = L(R) \Rightarrow DC$. As a corollary we have that $\operatorname{Con}(ZF + AD) \Rightarrow \operatorname{Con}(ZF + AD + DC)$. Combined with the result of Woodin that $\operatorname{Con}(ZF + AD) \Rightarrow \operatorname{Con}(ZF + AD + \neg AC^\omega)$ it follows that $DC$ (as well as $AC^\omega$) is independent relative to $ZF + AD$. It is finally shown (jointly with H. Woodin) that $ZF + AD + \neg DC_\mathbf{R}$, where $DC_\mathbb{R}$ is DC restricted to reals, implies the consistency of $ZF + AD + DC$, in fact implies $\mathbb{R}^{\tt\#}$ (i.e. the sharp of $L(\mathbf{R}))$ exists.
Publié le : 1984-03-14
Classification: 
@article{1183741483,
     author = {Kechris, Alexander S.},
     title = {The Axiom of Determinancy Implies Dependent Choices in $L(\mathbf{R})$},
     journal = {J. Symbolic Logic},
     volume = {49},
     number = {1},
     year = {1984},
     pages = { 161-173},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183741483}
}
Kechris, Alexander S. The Axiom of Determinancy Implies Dependent Choices in $L(\mathbf{R})$. J. Symbolic Logic, Tome 49 (1984) no. 1, pp.  161-173. http://gdmltest.u-ga.fr/item/1183741483/