Magidor-Malitz Quantifiers in Modules
Baudisch, Andreas
J. Symbolic Logic, Tome 49 (1984) no. 1, p. 1-8 / Harvested from Project Euclid
We prove the elimination of Magidor-Malitz quantifiers for $R$-modules relative to certain $Q^2_\alpha$-core sentences and positive primitive formulas. For complete extensions of the elementary theory of $R$-modules it follows that all Ramsey quantifiers ($\aleph_0$-interpretation) are eliminable. By a result of Baldwin and Kueker [1] this implies that there is no $R$-module having the finite cover property.
Publié le : 1984-03-14
Classification: 
@article{1183741469,
     author = {Baudisch, Andreas},
     title = {Magidor-Malitz Quantifiers in Modules},
     journal = {J. Symbolic Logic},
     volume = {49},
     number = {1},
     year = {1984},
     pages = { 1-8},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183741469}
}
Baudisch, Andreas. Magidor-Malitz Quantifiers in Modules. J. Symbolic Logic, Tome 49 (1984) no. 1, pp.  1-8. http://gdmltest.u-ga.fr/item/1183741469/