Downward Transfer of Satisfiability for Sentences of $L^{1,1}$
Malitz, Jerome
J. Symbolic Logic, Tome 48 (1983) no. 1, p. 1146-1150 / Harvested from Project Euclid
The quantifier $Q^{m,n}$ binds $m + n$ variables. In the $\kappa$-interpretation $M \models Q^{m,n} \bar{x}, \bar{y}\phi\bar{x}, \bar{y}$ means that there is a $\kappa$-powered proper subset $X$ of $|M|$ such that whenever $\bar{a} \in^mX$ and $\bar{b} \in^n\tilde{X}$ then $M \models \phi\bar{a}, \bar{b}$. If $\sigma \in L^{m,n}$ has a model in the $\kappa$-interpretation does it have a model in the $\lambda$-interpretation? For $\sigma \in L^{1,1}, \kappa$ regular and uncountable, and $\lambda = \omega_1$ the answer is yes.
Publié le : 1983-12-14
Classification: 
@article{1183741424,
     author = {Malitz, Jerome},
     title = {Downward Transfer of Satisfiability for Sentences of $L^{1,1}$},
     journal = {J. Symbolic Logic},
     volume = {48},
     number = {1},
     year = {1983},
     pages = { 1146-1150},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183741424}
}
Malitz, Jerome. Downward Transfer of Satisfiability for Sentences of $L^{1,1}$. J. Symbolic Logic, Tome 48 (1983) no. 1, pp.  1146-1150. http://gdmltest.u-ga.fr/item/1183741424/