Orbits of Hyperhypersimple Sets and the Lattice of $\sum^0_3$ Sets
Herrmann, E.
J. Symbolic Logic, Tome 48 (1983) no. 1, p. 693-699 / Harvested from Project Euclid
It will be shown that in the lattice of recursively enumerable sets all lattices $\underline{L}(X)$ are elementarily definable with parameters, where $X$ is $\Sigma^0_3$ and $\underline{L}^3(X)$ consists of all $\Sigma^0_3$ sets containing $X$.
Publié le : 1983-09-14
Classification: 
@article{1183741328,
     author = {Herrmann, E.},
     title = {Orbits of Hyperhypersimple Sets and the Lattice of $\sum^0\_3$ Sets},
     journal = {J. Symbolic Logic},
     volume = {48},
     number = {1},
     year = {1983},
     pages = { 693-699},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183741328}
}
Herrmann, E. Orbits of Hyperhypersimple Sets and the Lattice of $\sum^0_3$ Sets. J. Symbolic Logic, Tome 48 (1983) no. 1, pp.  693-699. http://gdmltest.u-ga.fr/item/1183741328/