$QE$ Rings in Characteristic $p^n$
Berline, Chantal ; Cherlin, Gregory
J. Symbolic Logic, Tome 48 (1983) no. 1, p. 140-162 / Harvested from Project Euclid
We show that all $QE$ rings of prime power characteristic are constructed in a straightforward way out of three components: a filtered Boolean power of a finite field, a nilpotent Jacobson radical, and the ring $\mathbf{Z}_{p^n}$ or the Witt ring $W_2(\mathbf{F}_4)$ (which is the characteristic four analogue of the Galois field with four elements).
Publié le : 1983-03-14
Classification: 
@article{1183741198,
     author = {Berline, Chantal and Cherlin, Gregory},
     title = {$QE$ Rings in Characteristic $p^n$},
     journal = {J. Symbolic Logic},
     volume = {48},
     number = {1},
     year = {1983},
     pages = { 140-162},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183741198}
}
Berline, Chantal; Cherlin, Gregory. $QE$ Rings in Characteristic $p^n$. J. Symbolic Logic, Tome 48 (1983) no. 1, pp.  140-162. http://gdmltest.u-ga.fr/item/1183741198/