An Invariance Notion in Recursion Theory
Byerly, Robert E.
J. Symbolic Logic, Tome 47 (1982) no. 1, p. 48-66 / Harvested from Project Euclid
A set of godel numbers is invariant if it is closed under automorphisms of $(\omega, \cdot)$, where $\omega$ is the set of all godel numbers of partial recursive functions and $\cdot$ is application (i.e., $n \cdot m \simeq \varphi_n(m))$. The invariant arithmetic sets are investigated, and the invariant recursively enumerable sets and partial recursive functions are partially characterized.
Publié le : 1982-03-14
Classification: 
@article{1183740940,
     author = {Byerly, Robert E.},
     title = {An Invariance Notion in Recursion Theory},
     journal = {J. Symbolic Logic},
     volume = {47},
     number = {1},
     year = {1982},
     pages = { 48-66},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183740940}
}
Byerly, Robert E. An Invariance Notion in Recursion Theory. J. Symbolic Logic, Tome 47 (1982) no. 1, pp.  48-66. http://gdmltest.u-ga.fr/item/1183740940/