Models Without Indiscernibles
Abramson, Fred G. ; Harrington, Leo A.
J. Symbolic Logic, Tome 43 (1978) no. 1, p. 572-600 / Harvested from Project Euclid
For $T$ any completion of Peano Arithmetic and for $n$ any positive integer, there is a model of $T$ of size $\beth_n$ with no $(n + 1)$-length sequence of indiscernibles. Hence the Hanf number for omitting types over $T, H(T)$, is at least $\beth_\omega$. (Now, using an upper bound previously obtained by Julia Knight $H$ (true arithmetic) is exactly $\beth_\omega$). If $T \neq$ true arithmetic, then $H(T) = \beth_{\omega1}$. If $\delta \not\rightarrow (\rho)^{<\omega}$, then any completion of Peano Arithmetic has a model of size $\delta$ with no set of indiscernibles of size $\rho$. There are similar results for theories strongly resembling Peano Arithmetic, e.g., $\mathrm{ZF} + V = L$.
Publié le : 1978-09-14
Classification: 
@article{1183740263,
     author = {Abramson, Fred G. and Harrington, Leo A.},
     title = {Models Without Indiscernibles},
     journal = {J. Symbolic Logic},
     volume = {43},
     number = {1},
     year = {1978},
     pages = { 572-600},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183740263}
}
Abramson, Fred G.; Harrington, Leo A. Models Without Indiscernibles. J. Symbolic Logic, Tome 43 (1978) no. 1, pp.  572-600. http://gdmltest.u-ga.fr/item/1183740263/