The complement of the Bowditch space in the $\mathrm{SL}(2,\mathbb{C})$ character variety
Ng, Shawn Pheng Keong ; Tan, Ser Peow
Osaka J. Math., Tome 44 (2007) no. 1, p. 247-254 / Harvested from Project Euclid
Let $\mathcal X$ be the space of type-preserving $\mathrm{SL}(2,\mathbb{C})$ characters of the punctured torus $T$. The Bowditch space $\mathcal{X}_{\mathrm{BQ}}$ is the largest open subset of $\mathcal{X}$ on which the mapping class group acts properly discontinuously, this is characterized by two simple conditions called the BQ-conditions. In this note, we show that $[\rho] \in \operatorname{int}(\mathcal{X} \setminus \mathcal{X}_{\mathrm{BQ}})$ if there exists an essential simple closed curve $X$ on $T$ such that $|\tr\rho(X)|<0.5$.
Publié le : 2007-06-14
Classification:  57M05,  30F60,  20H10,  37F30
@article{1183667980,
     author = {Ng, Shawn Pheng Keong and Tan, Ser Peow},
     title = {The complement of the Bowditch space in the $\mathrm{SL}(2,\mathbb{C})$ character variety},
     journal = {Osaka J. Math.},
     volume = {44},
     number = {1},
     year = {2007},
     pages = { 247-254},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183667980}
}
Ng, Shawn Pheng Keong; Tan, Ser Peow. The complement of the Bowditch space in the $\mathrm{SL}(2,\mathbb{C})$ character variety. Osaka J. Math., Tome 44 (2007) no. 1, pp.  247-254. http://gdmltest.u-ga.fr/item/1183667980/