Uniformly root-n consistent density estimators for weakly dependent invertible linear processes
Schick, Anton ; Wefelmeyer, Wolfgang
Ann. Statist., Tome 35 (2007) no. 1, p. 815-843 / Harvested from Project Euclid
Convergence rates of kernel density estimators for stationary time series are well studied. For invertible linear processes, we construct a new density estimator that converges, in the supremum norm, at the better, parametric, rate n−1/2. Our estimator is a convolution of two different residual-based kernel estimators. We obtain in particular convergence rates for such residual-based kernel estimators; these results are of independent interest.
Publié le : 2007-04-14
Classification:  Least squares estimator,  kernel estimator,  plug-in estimator,  functional limit theorem,  infinite-order moving average process,  infinite-order autoregressive process,  62G07,  62G20,  62M05,  62M10
@article{1183667295,
     author = {Schick, Anton and Wefelmeyer, Wolfgang},
     title = {Uniformly root-n consistent density estimators for weakly dependent invertible linear processes},
     journal = {Ann. Statist.},
     volume = {35},
     number = {1},
     year = {2007},
     pages = { 815-843},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183667295}
}
Schick, Anton; Wefelmeyer, Wolfgang. Uniformly root-n consistent density estimators for weakly dependent invertible linear processes. Ann. Statist., Tome 35 (2007) no. 1, pp.  815-843. http://gdmltest.u-ga.fr/item/1183667295/