Every closed orientable 3-manifold is a 3-fold branched covering space of $S^3$
Hilden, Hugh M.
Bull. Amer. Math. Soc., Tome 80 (1974) no. 4, p. 1243-1244 / Harvested from Project Euclid
Publié le : 1974-11-15
Classification:  55A10,  57A10,  55A25
@article{1183536038,
     author = {Hilden, Hugh M.},
     title = {Every closed orientable 3-manifold is a 3-fold branched covering space of $S^3$},
     journal = {Bull. Amer. Math. Soc.},
     volume = {80},
     number = {4},
     year = {1974},
     pages = { 1243-1244},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183536038}
}
Hilden, Hugh M. Every closed orientable 3-manifold is a 3-fold branched covering space of $S^3$. Bull. Amer. Math. Soc., Tome 80 (1974) no. 4, pp.  1243-1244. http://gdmltest.u-ga.fr/item/1183536038/