Construction of solutions to the $L^2$ -critical KdV equation with a given asymptotic behaviour
Côte, Raphaël
Duke Math. J., Tome 136 (2007) no. 1, p. 487-531 / Harvested from Project Euclid
We consider the critical Korteweg–de Vries (KdV) equation: \[ u_t + (u_{xx} + u^5)_x=0, \quad t,x \in {\mathbb R}. \] Let $R_j(t,x) = Q_{c_j}(x - x_j - c_jt)$ ( $j = 1, \dots, N$ ) be $N$ soliton solutions to this equation. Denote $U(t)$ the KdV linear group, and let $V \in H^1$ be with sufficient decay on the right; that is, let $(1+x_+^{2+\delta_0}) V \in L^2$ be for some $\delta_0 > 0$ . ¶ We construct a solution $u(t)$ to the critical KdV equation such that \[ \lim_{t \to \infty} \Big\| u(t) - U(t) V - \sum_{j=1}^N R_j (t) \Big\|_{H^1} =0. \]
Publié le : 2007-06-15
Classification:  35Q53,  35B40,  35Q51
@article{1182180655,
     author = {C\^ote, Rapha\"el},
     title = {Construction of solutions to the $L^2$ -critical KdV equation with a given asymptotic behaviour},
     journal = {Duke Math. J.},
     volume = {136},
     number = {1},
     year = {2007},
     pages = { 487-531},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1182180655}
}
Côte, Raphaël. Construction of solutions to the $L^2$ -critical KdV equation with a given asymptotic behaviour. Duke Math. J., Tome 136 (2007) no. 1, pp.  487-531. http://gdmltest.u-ga.fr/item/1182180655/