On the equivalence of the operator equations $XA+BX=C$ and $X-p (-B) Xp (A)^{-1}=W$ in a Hilbert space, $p$ a polynomial
MAZUMDAR, T. ; MILLER, D.
Rocky Mountain J. Math., Tome 20 (1990) no. 4, p. 477-488 / Harvested from Project Euclid
Publié le : 1990-06-14
Classification: 
@article{1181073122,
     author = {MAZUMDAR, T. and MILLER, D.},
     title = {On the equivalence of the operator equations $XA+BX=C$ and $X-p (-B) Xp (A)^{-1}=W$ in a Hilbert space, $p$ a polynomial},
     journal = {Rocky Mountain J. Math.},
     volume = {20},
     number = {4},
     year = {1990},
     pages = { 477-488},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1181073122}
}
MAZUMDAR, T.; MILLER, D. On the equivalence of the operator equations $XA+BX=C$ and $X-p (-B) Xp (A)^{-1}=W$ in a Hilbert space, $p$ a polynomial. Rocky Mountain J. Math., Tome 20 (1990) no. 4, pp.  477-488. http://gdmltest.u-ga.fr/item/1181073122/