The Density of Primes $P$, such that $-1$ is a Residue Modulo $P$ of Two Consecutive Fibonacci Numbers, is $2/3$
Ballot, Christian
Rocky Mountain J. Math., Tome 29 (1999) no. 4, p. 749-761 / Harvested from Project Euclid
Publié le : 1999-09-14
Classification:  Recurrence sequences,  density,  maximal division,  Fibonacci residues,  11B37,  11B83,  11B05,  11B39
@article{1181071607,
     author = {Ballot, Christian},
     title = {The Density of Primes $P$, such that $-1$ is a Residue Modulo $P$ of Two Consecutive Fibonacci Numbers, is $2/3$},
     journal = {Rocky Mountain J. Math.},
     volume = {29},
     number = {4},
     year = {1999},
     pages = { 749-761},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1181071607}
}
Ballot, Christian. The Density of Primes $P$, such that $-1$ is a Residue Modulo $P$ of Two Consecutive Fibonacci Numbers, is $2/3$. Rocky Mountain J. Math., Tome 29 (1999) no. 4, pp.  749-761. http://gdmltest.u-ga.fr/item/1181071607/