Branch points of Willmore surfaces
Kuwert, Ernst ; Schätzle, Reiner
Duke Math. J., Tome 136 (2007) no. 1, p. 179-201 / Harvested from Project Euclid
We consider Willmore surfaces in ${\mathbb R}^3$ with an isolated singularity of finite density at the origin. We show that locally, the surface is a union of finitely many multivalued graphs, each with a unique tangent plane at zero and with second fundamental form satisfying \[ |A(x)| \leq C_\varepsilon |x|^{-1+1/\theta_0-\varepsilon},\quad \forall \varepsilon > 0, \] where $\theta_0 \in {\mathbb N}$ is the maximal multiplicity. Examples of branched minimal surfaces show that this estimate is optimal up to the error $\varepsilon > 0$
Publié le : 2007-06-01
Classification:  53A05,  53A30,  53C21,  49Q15
@article{1181051029,
     author = {Kuwert, Ernst and Sch\"atzle, Reiner},
     title = {Branch points of Willmore surfaces},
     journal = {Duke Math. J.},
     volume = {136},
     number = {1},
     year = {2007},
     pages = { 179-201},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1181051029}
}
Kuwert, Ernst; Schätzle, Reiner. Branch points of Willmore surfaces. Duke Math. J., Tome 136 (2007) no. 1, pp.  179-201. http://gdmltest.u-ga.fr/item/1181051029/