Small gaps in coefficients of $L$-functions and $\mathfrak{B}$-free numbers in short intervals
Kowalski, Emmanuel ; Robert, Olivier ; Wu, Jie
Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, p. 281-326 / Harvested from Project Euclid
We discuss questions related to the non-existence of gaps in the series defining modular forms and other arithmetic functions of various types, and improve results of Serre, Balog and Ono, and Alkan using new results about exponential sums and the distribution of $\mathfrak{B}$-free numbers.
Publié le : 2007-04-14
Classification:  $\mathfrak{B}$-free numbers,  Fourier coefficients of modular forms,  Rankin-Selberg convolution,  exponential sums,  11F12,  11F30,  11F66,  11L15,  11N25
@article{1180728895,
     author = {Kowalski, Emmanuel and Robert, Olivier and Wu, Jie},
     title = {Small gaps in coefficients of $L$-functions and $\mathfrak{B}$-free numbers in short intervals},
     journal = {Rev. Mat. Iberoamericana},
     volume = {23},
     number = {1},
     year = {2007},
     pages = { 281-326},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1180728895}
}
Kowalski, Emmanuel; Robert, Olivier; Wu, Jie. Small gaps in coefficients of $L$-functions and $\mathfrak{B}$-free numbers in short intervals. Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, pp.  281-326. http://gdmltest.u-ga.fr/item/1180728895/