Modified logarithmic Sobolev inequalities in null curvature
Gentil, Ivan ; Guillin, Arnaud ; Miclo, Laurent
Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, p. 235-258 / Harvested from Project Euclid
We present a new logarithmic Sobolev inequality adapted to a log-concave measure on $\mathbb{R}$ between the exponential and the Gaussian measure. More precisely, assume that $\Phi$ is a symmetric convex function on $\mathbb{R}$ satisfying $(1+\varepsilon)\Phi(x)\leq {x}\Phi'(x)\leq(2-\varepsilon)\Phi(x)$ for $x\geq 0$ large enough and with $\varepsilon\in ]0,1/2]$. We prove that the probability measure on $\mathbb{R}$ $\mu_\Phi(dx)=e^{-\Phi(x)}/Z_\Phi dx$ satisfies a modified and adapted logarithmic Sobolev inequality: there exist three constants $A,B,C>0$ such that for all smooth functions $f>0$, $$ \mathbf{Ent}_{\mu_\Phi}{\left(f^2\right)}\leq A\int H_{\Phi}\left(\frac{f'}{f}\right)f^2d\mu_\Phi, $$ with $$ H_{\Phi}(x)= \left\{ \begin{array}{l} x^2 \text{ if }\left|x\right|< C,\\ \Phi^*\left(Bx\right) \text{ if }\left|x\right|\geq C, \end{array} \right. $$ where $\Phi^*$ is the Legendre-Fenchel transform of $\Phi$.
Publié le : 2007-04-14
Classification:  logarithmic Sobolev inequality,  Poincar#x00E9; inequality,  concentration inequality,  log-concave measure,  26D99,  60E15,  39B72
@article{1180728892,
     author = {Gentil, Ivan and Guillin, Arnaud and Miclo, Laurent},
     title = {Modified logarithmic Sobolev inequalities in null curvature},
     journal = {Rev. Mat. Iberoamericana},
     volume = {23},
     number = {1},
     year = {2007},
     pages = { 235-258},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1180728892}
}
Gentil, Ivan; Guillin, Arnaud; Miclo, Laurent. Modified logarithmic Sobolev inequalities in null curvature. Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, pp.  235-258. http://gdmltest.u-ga.fr/item/1180728892/