We provide an integral formula for the Poisson kernel of half-spaces
for Brownian motion in real hyperbolic space $\mathbb{H}^n$. This enables us
to find asymptotic properties of the kernel. We also show convergence to the
Poisson kernel of the whole space $\mathbb{H}^n$. For $n=3$, $4$ or $6$
we compute explicit formulas for the Poisson kernel itself.
@article{1180728886,
author = {Byczkowski, Tomasz and Graczyk, Piotr and St\'os, Andrzej},
title = {Poisson kernels of half-spaces in real hyperbolic spaces},
journal = {Rev. Mat. Iberoamericana},
volume = {23},
number = {1},
year = {2007},
pages = { 85-126},
language = {en},
url = {http://dml.mathdoc.fr/item/1180728886}
}
Byczkowski, Tomasz; Graczyk, Piotr; Stós, Andrzej. Poisson kernels of half-spaces in real hyperbolic spaces. Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, pp. 85-126. http://gdmltest.u-ga.fr/item/1180728886/