The Magic Square and Symmetric Compositions II
Elduque, Alberto
Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, p. 57-84 / Harvested from Project Euclid
The construction of Freudenthal's Magic Square, which contains the exceptional simple Lie algebras of types $F_4,E_6,E_7$ and $E_8$, in terms of symmetric composition algebras is further developed here. The para-Hurwitz algebras, which form a subclass of the symmetric composition algebras, will be defined, in the split case, in terms of the natural two dimensional module for the simple Lie algebra $\mathfrak{sl}_2$. As a consequence, it will be shown how all the Lie algebras in Freudenthal's Magic Square can be constructed, in a unified way, using copies of $\mathfrak{sl}_2$ and of its natural module.
Publié le : 2007-04-14
Classification:  Freudenthal magic square,  symmetric composition algebra,  triality,  exceptional Lie algebra,  17B25,  17A75
@article{1180728885,
     author = {Elduque, Alberto},
     title = {The Magic Square and Symmetric Compositions II},
     journal = {Rev. Mat. Iberoamericana},
     volume = {23},
     number = {1},
     year = {2007},
     pages = { 57-84},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1180728885}
}
Elduque, Alberto. The Magic Square and Symmetric Compositions II. Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, pp.  57-84. http://gdmltest.u-ga.fr/item/1180728885/