Local Fatou theorem and the density of energy on manifolds of negative curvature
Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, p. 1-16 / Harvested from Project Euclid
Let $u$ be a harmonic function on a complete simply connected manifold $M$ whose sectional curvatures are bounded between two negative constants. It is proved here a pointwise criterion of non-tangential convergence for points of the geometric boundary: the finiteness of the density of energy, which is the geometric analogue of the density of the area integral in the Euclidean half-space.
Publié le : 2007-04-14
Classification:  harmonic functions,  Fatou type theorems,  area integral,  negative curvature,  Brownian motion,  31C12,  31C35,  58J65,  60J45
@article{1180728883,
     author = {Mouton
,  
Fr\'ed\'eric},
     title = {Local Fatou theorem and the density of energy on manifolds of negative curvature},
     journal = {Rev. Mat. Iberoamericana},
     volume = {23},
     number = {1},
     year = {2007},
     pages = { 1-16},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1180728883}
}
Mouton
,  
Frédéric. Local Fatou theorem and the density of energy on manifolds of negative curvature. Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, pp.  1-16. http://gdmltest.u-ga.fr/item/1180728883/