We define new $L^{2}$ -invariants which we call secondary Novikov-Shubin invariants.We calculate the first secondary Novikov-Shubin invariants of finitely generated groups by using random walk on Cayley graphs and see in particular that these are invariant under quasi-isometry.
Publié le : 2007-01-14
Classification:
L^{2}-invariants,
Novikov-Shubin invariants,
random walk,
Cayley graphs,
quasi-isometry,
58J50,
60C05
@article{1180135508,
author = {OGUNI, Shin-ichi},
title = {Secondary Novikov-Shubin invariants of groups and quasi-isometry},
journal = {J. Math. Soc. Japan},
volume = {59},
number = {1},
year = {2007},
pages = { 223-237},
language = {en},
url = {http://dml.mathdoc.fr/item/1180135508}
}
OGUNI, Shin-ichi. Secondary Novikov-Shubin invariants of groups and quasi-isometry. J. Math. Soc. Japan, Tome 59 (2007) no. 1, pp. 223-237. http://gdmltest.u-ga.fr/item/1180135508/