Secondary Novikov-Shubin invariants of groups and quasi-isometry
OGUNI, Shin-ichi
J. Math. Soc. Japan, Tome 59 (2007) no. 1, p. 223-237 / Harvested from Project Euclid
We define new $L^{2}$ -invariants which we call secondary Novikov-Shubin invariants.We calculate the first secondary Novikov-Shubin invariants of finitely generated groups by using random walk on Cayley graphs and see in particular that these are invariant under quasi-isometry.
Publié le : 2007-01-14
Classification:  L^{2}-invariants,  Novikov-Shubin invariants,  random walk,  Cayley graphs,  quasi-isometry,  58J50,  60C05
@article{1180135508,
     author = {OGUNI, Shin-ichi},
     title = {Secondary Novikov-Shubin invariants of groups and quasi-isometry},
     journal = {J. Math. Soc. Japan},
     volume = {59},
     number = {1},
     year = {2007},
     pages = { 223-237},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1180135508}
}
OGUNI, Shin-ichi. Secondary Novikov-Shubin invariants of groups and quasi-isometry. J. Math. Soc. Japan, Tome 59 (2007) no. 1, pp.  223-237. http://gdmltest.u-ga.fr/item/1180135508/