Homotopy minimal periods for expanding maps on infra-nilmanifolds
LEE, Jong Bum ; ZHAO, Xuezhi
J. Math. Soc. Japan, Tome 59 (2007) no. 1, p. 179-184 / Harvested from Project Euclid
We prove that the sets of homotopy minimal periods for expanding maps on $n$ -dimensional infra-nilmanifolds are uniformly cofinite,i.e., there exists a positive integer $m_0$ , which depends only on $n$ , such that for any integer $m\ge m_0$ , for any $n$ -dimensional infra-nilmanifold $M$ , and for any expanding map $f$ on $M$ , any self-map on $M$ homotopic to $f$ has a periodic point of least period $m$ , namely, $[m_0,\infty)\subset {\rm HPer}(f)$ . This extends the main result, Theorem 4.6, of [13] from periods to homotopy periods.
Publié le : 2007-01-14
Classification:  essentially reducible,  expanding maps,  homotopy minimal periods,  infra-nilmanifolds,  55M20,  57S30
@article{1180135506,
     author = {LEE, Jong Bum and ZHAO, Xuezhi},
     title = {Homotopy minimal periods for expanding maps on infra-nilmanifolds},
     journal = {J. Math. Soc. Japan},
     volume = {59},
     number = {1},
     year = {2007},
     pages = { 179-184},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1180135506}
}
LEE, Jong Bum; ZHAO, Xuezhi. Homotopy minimal periods for expanding maps on infra-nilmanifolds. J. Math. Soc. Japan, Tome 59 (2007) no. 1, pp.  179-184. http://gdmltest.u-ga.fr/item/1180135506/