Very weak solutions of the Navier-Stokes equations in exterior domains with nonhomogeneous data
FARWIG, Reinhard ; KOZONO, Hideo ; SOHR, Hermann
J. Math. Soc. Japan, Tome 59 (2007) no. 1, p. 127-150 / Harvested from Project Euclid
We investigate the nonstationary Navier-Stokes equations for an exterior domain $\Omega\subset \bm{R}^3$ in a solution class $L^s (0,T;L^q(\Omega))$ of very low regularity in space and time, satisfying Serrin's condition $\frac{2}{s} + \frac{3}{q} = 1$ but not necessarily any differentiability property. The weakest possible boundary conditions, beyond the usual trace theorems, are given by $u|_{\partial\Omega} = g \in L^s (0,T;W^{-1/q,q}(\partial\Omega))$ , and will be made precise in this paper. Moreover, we suppose the weakest possible divergence condition $k = \div u \in L^s(0,T;L^r(\Omega))$ , where $\frac{1}{3} + \frac{1}{q} = \frac{1}{r}$ .
Publié le : 2007-01-14
Classification:  Stokes and Navier-Stokes equations,  very weak solutions,  nonhomogeneous data,  Serrin's class,  76D05,  35J25,  35J65,  35Q30,  35K60
@article{1180135504,
     author = {FARWIG, Reinhard and KOZONO, Hideo and SOHR, Hermann},
     title = {Very weak solutions of the Navier-Stokes equations in exterior domains with nonhomogeneous data},
     journal = {J. Math. Soc. Japan},
     volume = {59},
     number = {1},
     year = {2007},
     pages = { 127-150},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1180135504}
}
FARWIG, Reinhard; KOZONO, Hideo; SOHR, Hermann. Very weak solutions of the Navier-Stokes equations in exterior domains with nonhomogeneous data. J. Math. Soc. Japan, Tome 59 (2007) no. 1, pp.  127-150. http://gdmltest.u-ga.fr/item/1180135504/