Pencil genus for normal surface singularities
TOMARU, Tadashi
J. Math. Soc. Japan, Tome 59 (2007) no. 1, p. 35-80 / Harvested from Project Euclid
Let $(X,o)$ be a normal complex surface singularity. We define an invariant $p_e(X,o)$ for $(X,o)$ in terms of pencils of compact complex curves. Similarly, for a pair of $(X,o)$ and $h \in {\mathfrak m}_{X,o}$ (the maximal ideal of $\mathscr{O}_{X,o}$ ), we define an invariant $p_e(X,o,h)$ . We call $p_e(X,o)$ (resp. $p_e(X,o,h)$ ) the pencil genus of $(X,o)$ (resp. a pair of $(X,o)$ and $h$ ). In this paper, we give a method to construct pencils of compact complex curves by gluing a resolution space of $(X,o)$ and resolution spaces of some cyclic quotient singularities. Using this, we prove some formulae on $p_e(X,o,h)$ and estimate $p_e(X,o)$ . We also characterize Kodaira singularities in terms of $p_e(X,o,h)$ .
Publié le : 2007-01-14
Classification:  surface singularities,  pencils of curves,  Kodaira singularities,  32S10,  32S25,  14D06
@article{1180135500,
     author = {TOMARU, Tadashi},
     title = {Pencil genus for normal surface singularities},
     journal = {J. Math. Soc. Japan},
     volume = {59},
     number = {1},
     year = {2007},
     pages = { 35-80},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1180135500}
}
TOMARU, Tadashi. Pencil genus for normal surface singularities. J. Math. Soc. Japan, Tome 59 (2007) no. 1, pp.  35-80. http://gdmltest.u-ga.fr/item/1180135500/