Asymptotic minimaxity of false discovery rate thresholding for sparse exponential data
Donoho, David ; Jin, Jiashun
Ann. Statist., Tome 34 (2006) no. 1, p. 2980-3018 / Harvested from Project Euclid
We apply FDR thresholding to a non-Gaussian vector whose coordinates Xi, i=1, …, n, are independent exponential with individual means μi. The vector μ=(μi) is thought to be sparse, with most coordinates 1 but a small fraction significantly larger than 1; roughly, most coordinates are simply ‘noise,’ but a small fraction contain ‘signal.’ We measure risk by per-coordinate mean-squared error in recovering log(μi), and study minimax estimation over parameter spaces defined by constraints on the per-coordinate p-norm of log(μi), $\frac{1}{n}\sum_{i=1}^{n}\,\log^{p}(\mu_{i})\leq \eta^{p}$ . ¶ We show for large n and small η that FDR thresholding can be nearly minimax. The FDR control parameter 01/2 prevents near minimaxity. ¶ These conclusions mirror those found in the Gaussian case in Abramovich et al. [Ann. Statist. 34 (2006) 584–653]. The techniques developed here seem applicable to a wide range of other distributional assumptions, other loss measures and non-i.i.d. dependency structures.
Publié le : 2006-12-15
Classification:  Minimax decision theory,  minimax Bayes estimation,  mixtures of exponential model,  sparsity,  false discovery rate (FDR),  multiple comparisons,  threshold rules,  62H12,  62C20,  62G20,  62C10,  62C12
@article{1179935072,
     author = {Donoho, David and Jin, Jiashun},
     title = {Asymptotic minimaxity of false discovery rate thresholding for sparse exponential data},
     journal = {Ann. Statist.},
     volume = {34},
     number = {1},
     year = {2006},
     pages = { 2980-3018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1179935072}
}
Donoho, David; Jin, Jiashun. Asymptotic minimaxity of false discovery rate thresholding for sparse exponential data. Ann. Statist., Tome 34 (2006) no. 1, pp.  2980-3018. http://gdmltest.u-ga.fr/item/1179935072/