Robust estimates in generalized partially linear models
Boente, Graciela ; He, Xuming ; Zhou, Jianhui
Ann. Statist., Tome 34 (2006) no. 1, p. 2856-2878 / Harvested from Project Euclid
In this paper, we introduce a family of robust estimates for the parametric and nonparametric components under a generalized partially linear model, where the data are modeled by yi|(xi, ti)∼F(⋅, μi) with μi=H(η(ti)+xiTβ), for some known distribution function F and link function H. It is shown that the estimates of β are root-n consistent and asymptotically normal. Through a Monte Carlo study, the performance of these estimators is compared with that of the classical ones.
Publié le : 2006-12-15
Classification:  Kernel weights,  partially linear models,  rate of convergence,  robust estimation,  smoothing,  62F35,  62G08
@article{1179935067,
     author = {Boente, Graciela and He, Xuming and Zhou, Jianhui},
     title = {Robust estimates in generalized partially linear models},
     journal = {Ann. Statist.},
     volume = {34},
     number = {1},
     year = {2006},
     pages = { 2856-2878},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1179935067}
}
Boente, Graciela; He, Xuming; Zhou, Jianhui. Robust estimates in generalized partially linear models. Ann. Statist., Tome 34 (2006) no. 1, pp.  2856-2878. http://gdmltest.u-ga.fr/item/1179935067/