Deterministic equivalents for certain functionals of large random matrices
Hachem, Walid ; Loubaton, Philippe ; Najim, Jamal
Ann. Appl. Probab., Tome 17 (2007) no. 1, p. 875-930 / Harvested from Project Euclid
Consider an N×n random matrix Yn=(Ynij) where the entries are given by $Y^{n}_{ij}=\frac{\sigma_{ij}(n)}{\sqrt{n}}X^{n}_{ij}$ , the Xnij being independent and identically distributed, centered with unit variance and satisfying some mild moment assumption. Consider now a deterministic N×n matrix An whose columns and rows are uniformly bounded in the Euclidean norm. Let Σn=Yn+An. We prove in this article that there exists a deterministic N×N matrix-valued function Tn(z) analytic in ℂ−ℝ+ such that, almost surely, ¶ \[\lim_{n\rightarrow+\infty,N/n\rightarrow c}\biggl(\frac{1}{N}\operatorname{Trace}(\Sigma_{n}\Sigma_{n}^{T}-zI_{N})^{-1}-\frac{1}{N}\operatorname{Trace}T_{n}(z)\biggr )=0.\] ¶ Otherwise stated, there exists a deterministic equivalent to the empirical Stieltjes transform of the distribution of the eigenvalues of ΣnΣnT. For each n, the entries of matrix Tn(z) are defined as the unique solutions of a certain system of nonlinear functional equations. It is also proved that $\frac{1}{N}\operatorname{Trace}\ T_{n}(z)$ is the Stieltjes transform of a probability measure πn(dλ), and that for every bounded continuous function f, the following convergence holds almost surely ¶ \[\frac{1}{N}\sum_{k=1}^{N}f(\lambda_{k})-\int_{0}^{\infty}f(\lambda)\pi _{n}(d\lambda)\mathop{\longrightarrow}_{n\rightarrow\infty}0,\] ¶ where the (λk)1≤k≤N are the eigenvalues of ΣnΣnT. This work is motivated by the context of performance evaluation of multiple inputs/multiple output (MIMO) wireless digital communication channels. As an application, we derive a deterministic equivalent to the mutual information: ¶ \[C_{n}(\sigma^{2})=\frac{1}{N}\mathbb{E}\log \det\biggl(I_{N}+\frac{\Sigma_{n}\Sigma_{n}^{T}}{\sigma^{2}}\biggr),\] ¶ where σ2 is a known parameter.
Publié le : 2007-06-15
Classification:  Random matrix,  empirical distribution of the eigenvalues,  Stieltjes transform,  15A52,  15A18,  60F15
@article{1179839177,
     author = {Hachem, Walid and Loubaton, Philippe and Najim, Jamal},
     title = {Deterministic equivalents for certain functionals of large random matrices},
     journal = {Ann. Appl. Probab.},
     volume = {17},
     number = {1},
     year = {2007},
     pages = { 875-930},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1179839177}
}
Hachem, Walid; Loubaton, Philippe; Najim, Jamal. Deterministic equivalents for certain functionals of large random matrices. Ann. Appl. Probab., Tome 17 (2007) no. 1, pp.  875-930. http://gdmltest.u-ga.fr/item/1179839177/