Boundary regularity for p-harmonic functions and solutions of the obstacle problem on metric spaces
BJÖRN, Anders ; BJÖRN, Jana
J. Math. Soc. Japan, Tome 58 (2006) no. 3, p. 1211-1232 / Harvested from Project Euclid
We study $p$ -harmonic functions in complete metric spaces equipped with a doubling Borel measure supporting a weak $(1,p)$ -Poincaré inequality, $1
Publié le : 2006-10-14
Classification:  barrier,  doubling,  metric space,  nonlinear,  obstacle problem,  p-harmonic,  Poincaré inequality,  regular,  superharmonic,  35J65,  31C45,  35B65,  46E35,  49N60
@article{1179759546,
     author = {BJ\"ORN, Anders and BJ\"ORN, Jana},
     title = {Boundary regularity for p-harmonic functions and solutions of the obstacle problem on metric spaces},
     journal = {J. Math. Soc. Japan},
     volume = {58},
     number = {3},
     year = {2006},
     pages = { 1211-1232},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1179759546}
}
BJÖRN, Anders; BJÖRN, Jana. Boundary regularity for p-harmonic functions and solutions of the obstacle problem on metric spaces. J. Math. Soc. Japan, Tome 58 (2006) no. 3, pp.  1211-1232. http://gdmltest.u-ga.fr/item/1179759546/