`Spindles' in symmetric spaces
QUAST, Peter
J. Math. Soc. Japan, Tome 58 (2006) no. 3, p. 985-994 / Harvested from Project Euclid
We study families of submanifolds in symmetric spaces of compact type arising as exponential images of $s$ -orbits of variable radii. If the $s$ -orbit is symmetric such submanifolds are the most important examples of adapted submanifolds, i.e. of submanifolds of symmetric spaces with curvature invariant tangent and normal spaces.
Publié le : 2006-10-14
Classification:  extrinsic geometry,  submanifolds,  symmetric spaces,  Lie triples,  53C40,  53C35,  32M15
@article{1179759533,
     author = {QUAST, Peter},
     title = {`Spindles' in symmetric spaces},
     journal = {J. Math. Soc. Japan},
     volume = {58},
     number = {3},
     year = {2006},
     pages = { 985-994},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1179759533}
}
QUAST, Peter. `Spindles' in symmetric spaces. J. Math. Soc. Japan, Tome 58 (2006) no. 3, pp.  985-994. http://gdmltest.u-ga.fr/item/1179759533/