The horospherical Gauss-Bonnet type theorem in hyperbolic space
IZUMIYA, Shyuichi ; ROMERO FUSTER, María del Carmen
J. Math. Soc. Japan, Tome 58 (2006) no. 3, p. 965-984 / Harvested from Project Euclid
We introduce the notion horospherical curvatures of hypersurfaces in hyperbolic space andshow that totally umbilic hypersurfaces with vanishing curvatures are only horospheres. We also show that the Gauss-Bonnet type theorem holds for the horospherical Gauss-Kronecker curvature of a closed orientable even dimensional hypersurface in hyperbolic space.
Publié le : 2006-10-14
Classification:  hyperbolic space,  hypersurfaces,  hyperbolic Gauss maps,  horospherical geometry,  Gauss-Bonnet type theorem,  53A35,  53A05,  58C27
@article{1179759532,
     author = {IZUMIYA, Shyuichi and ROMERO FUSTER, Mar\'\i a del Carmen},
     title = {The horospherical Gauss-Bonnet type theorem in hyperbolic space},
     journal = {J. Math. Soc. Japan},
     volume = {58},
     number = {3},
     year = {2006},
     pages = { 965-984},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1179759532}
}
IZUMIYA, Shyuichi; ROMERO FUSTER, María del Carmen. The horospherical Gauss-Bonnet type theorem in hyperbolic space. J. Math. Soc. Japan, Tome 58 (2006) no. 3, pp.  965-984. http://gdmltest.u-ga.fr/item/1179759532/