We prove a weak-type (1, 1) inequality involving conditioned versions of square functions for martingales in noncommutative Lp-spaces associated with finite von Neumann algebras. As application, we determine the optimal orders for the best constants in the noncommutative Burkholder/Rosenthal inequalities from [Ann. Probab. 31 (2003) 948–995]. We also discuss BMO-norms of sums of noncommuting order-independent operators.
@article{1178804322,
author = {Randrianantoanina, Narcisse},
title = {Conditioned square functions for noncommutative martingales},
journal = {Ann. Probab.},
volume = {35},
number = {1},
year = {2007},
pages = { 1039-1070},
language = {en},
url = {http://dml.mathdoc.fr/item/1178804322}
}
Randrianantoanina, Narcisse. Conditioned square functions for noncommutative martingales. Ann. Probab., Tome 35 (2007) no. 1, pp. 1039-1070. http://gdmltest.u-ga.fr/item/1178804322/