Radon transform on real, complex, and quaternionic Grassmannians
Zhang, Genkai
Duke Math. J., Tome 136 (2007) no. 1, p. 137-160 / Harvested from Project Euclid
Let $G_{n,k}({\mathbb K})$ be the Grassmannian manifold of $k$ -dimensional ${\mathbb K}$ -subspaces in ${\mathbb K}^n$ , where ${\mathbb K}={\mathbb R}, {\mathbb C}, {\mathbb H}$ is the field of real, complex, or quaternionic numbers. For $1\le k \lt k^\prime \le n-1$ , we define the Radon transform $({\mathcal R}f)(\eta)$ , $\eta \in G_{n,k^{\prime}}({\mathbb K})$ , for functions $f(\xi)$ on $G_{n,k}({\mathbb K})$ as an integration over all $\xi \subset \eta$ . When $k+k^\prime \le n$ , we give an inversion formula in terms of the Gårding-Gindikin fractional integration and the Cayley-type differential operator on the symmetric cone of positive ( $k\times k$ )-matrices over ${\mathbb K}$ . This generalizes the recent results of Grinberg and Rubin [4] for real Grassmannians
Publié le : 2007-05-15
Classification:  26A33,  44A12,  53C65,  57S15,  43A85
@article{1178738562,
     author = {Zhang, Genkai},
     title = {Radon transform on real, complex, and quaternionic Grassmannians},
     journal = {Duke Math. J.},
     volume = {136},
     number = {1},
     year = {2007},
     pages = { 137-160},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1178738562}
}
Zhang, Genkai. Radon transform on real, complex, and quaternionic Grassmannians. Duke Math. J., Tome 136 (2007) no. 1, pp.  137-160. http://gdmltest.u-ga.fr/item/1178738562/