Discriminating Between Binomial Distributions
Hoel, Paul G.
Ann. Math. Statist., Tome 18 (1947) no. 4, p. 556-564 / Harvested from Project Euclid
Given a set of $k$ random samples, $x_1, x_2, \cdots, x_k$, from a binomial distribution with parameters $p$ and $n$, it is shown that the familiar binomial index of dispersion $z = \frac{\sum^k_1 (x_i - \bar x)^2}{\bar x\big(1 - \frac{\bar x}{n_0}\big)}$ yields an approximate best critical region independent of $p$ for testing the hypothesis $n = n_0$ against the alternative hypothesis $n > n_0$, provided $\bar x$ and $n_0 - \bar x$ are not small. Because of the nature of the test, its optimum properties also apply to testing whether the data came from a binomial population with $n = n_0$ or from a Poisson population.
Publié le : 1947-12-14
Classification: 
@article{1177730346,
     author = {Hoel, Paul G.},
     title = {Discriminating Between Binomial Distributions},
     journal = {Ann. Math. Statist.},
     volume = {18},
     number = {4},
     year = {1947},
     pages = { 556-564},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1177730346}
}
Hoel, Paul G. Discriminating Between Binomial Distributions. Ann. Math. Statist., Tome 18 (1947) no. 4, pp.  556-564. http://gdmltest.u-ga.fr/item/1177730346/