A Generalization of the Neyman-Pearson Fundamental Lemma
Chernoff, Herman ; Scheffe, Henry
Ann. Math. Statist., Tome 23 (1952) no. 4, p. 213-225 / Harvested from Project Euclid
Given $m + n$ real integrable functions $f_1, \cdots, f_m, g_1, \cdots, g_n$ of a point $x$ in a Euclidean space $X$, a real function $\phi(z_1, \cdots, z_n)$ of $n$ real variables, and $m$ constants $c_1, \cdots, c_m$, the problem considered is the existence of a set $S^0$ in $X$ maximizing $\phi\big(\int_s g_1 dx, \cdots, \int_s g_n dx\big)$ subject to the $m$ side conditions $\int_s f_i dx = c_i$, and the derivation of necessary conditions and of sufficient conditions on $S^0$. In some applications the point with coordinates $\big(\int_s g_1 dx, \cdots, \int_s g_n dx\big)$ may also be required to lie in a given set. The results obtained are illustrated with an example of statistical interest. There is some discussion of the computational problem of finding the maximizing $S^0$.
Publié le : 1952-06-14
Classification: 
@article{1177729438,
     author = {Chernoff, Herman and Scheffe, Henry},
     title = {A Generalization of the Neyman-Pearson Fundamental Lemma},
     journal = {Ann. Math. Statist.},
     volume = {23},
     number = {4},
     year = {1952},
     pages = { 213-225},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1177729438}
}
Chernoff, Herman; Scheffe, Henry. A Generalization of the Neyman-Pearson Fundamental Lemma. Ann. Math. Statist., Tome 23 (1952) no. 4, pp.  213-225. http://gdmltest.u-ga.fr/item/1177729438/