Processing math: 0%
Rank Sum Tests of Fit
Tsao, Chia Kuei
Ann. Math. Statist., Tome 26 (1955) no. 4, p. 94-104 / Harvested from Project Euclid
This paper suggests several `goodness of fit' test criteria, all having a linear form. The moment generating function and the limiting distribution of this linear form are obtained in Section 2. The best test criterion of this form for testing a simple hypothesis H_0 against a simple alternative hypothesis H_1 is shown, in Section 3, to be in general not independent of H_1. The remainder of this paper deals with a special case of the linear form, that is, the rank sum test criterion. The distribution of this test criterion is derived in Section 4, its consistency is proved in Section 5, and some numerical asymptotic efficiencies are calculated in Section 6. Within a certain class of tests, the present test is shown, in Section 7, to be uniformly most powerful for a special family of alternatives.
Publié le : 1955-03-14
Classification: 
@article{1177728596,
     author = {Tsao, Chia Kuei},
     title = {Rank Sum Tests of Fit},
     journal = {Ann. Math. Statist.},
     volume = {26},
     number = {4},
     year = {1955},
     pages = { 94-104},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1177728596}
}
Tsao, Chia Kuei. Rank Sum Tests of Fit. Ann. Math. Statist., Tome 26 (1955) no. 4, pp.  94-104. http://gdmltest.u-ga.fr/item/1177728596/