An Extension of the Kolmogorov Distribution
Blackman, Jerome
Ann. Math. Statist., Tome 27 (1956) no. 4, p. 513-520 / Harvested from Project Euclid
Let $x_1, x_2, \cdots, x_n, x'_1, x'_2, \cdots, x'_{nk}$ be independent random variables with a common continuous distribution $F(x)$. Let $x_1, x_2, \cdots, x_n$ have the empiric distribution $F_n(x)$ and $x'_1, x'_2, \cdots, x'_{kn}$ have the empiric distribution $G_{nk}(x)$. The exact values of $P(-y < F_n(s) - G_{nk}(s) < x$ for all $s$) and $P(-y < F(s) - F_n(s) < x$ for all $s$) are obtained, as well as the first two terms of the asymptotic series for large $n$.
Publié le : 1956-06-14
Classification: 
@article{1177728274,
     author = {Blackman, Jerome},
     title = {An Extension of the Kolmogorov Distribution},
     journal = {Ann. Math. Statist.},
     volume = {27},
     number = {4},
     year = {1956},
     pages = { 513-520},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1177728274}
}
Blackman, Jerome. An Extension of the Kolmogorov Distribution. Ann. Math. Statist., Tome 27 (1956) no. 4, pp.  513-520. http://gdmltest.u-ga.fr/item/1177728274/