Approximate Upper Percentage Points for Extreme Values in Multinomial Sampling
Kozelka, Robert M.
Ann. Math. Statist., Tome 27 (1956) no. 4, p. 507-512 / Harvested from Project Euclid
Given a $k$-fold multinomial distribution with equal probability for each category, the probability of the largest frequency in any category is desired. A simple asymptotic approximation to the upper percentage points of this distribution is obtained. A table of .95 and .99 points of the approximation for $k = 1(1)25$, and a table comparing these with actual values for $k = 3, 4, 5$ and $n = 3(1)12$, are provided. An investigation of the moment problem is given.
Publié le : 1956-06-14
Classification: 
@article{1177728273,
     author = {Kozelka, Robert M.},
     title = {Approximate Upper Percentage Points for Extreme Values in Multinomial Sampling},
     journal = {Ann. Math. Statist.},
     volume = {27},
     number = {4},
     year = {1956},
     pages = { 507-512},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1177728273}
}
Kozelka, Robert M. Approximate Upper Percentage Points for Extreme Values in Multinomial Sampling. Ann. Math. Statist., Tome 27 (1956) no. 4, pp.  507-512. http://gdmltest.u-ga.fr/item/1177728273/