Asymptotically Most Powerful Rank-Order Tests
Hajek, Jaroslav
Ann. Math. Statist., Tome 33 (1962) no. 4, p. 1124-1147 / Harvested from Project Euclid
Having observed $X_i = \alpha + \beta c_i + \sigma Y_i$, we test the hypothesis $\beta = 0$ against the alternative $\beta > 0$. We suppose that the square root of the probability density $f(x)$ of the residuals $Y_i$ possesses a quadratically integrable derivative and define a class of rank order tests, which are asymptotically most powerful for given $f$. The main result is exposed in the following succession: theorem, corollaries and examples, comments, preliminaries and proof. The proof is based on results by Hajek [6] and LeCam [8], [9]. Section 6 deals with asymptotic efficiency of rank-order tests, which is shown, on the basis of Mikulski's results [10], to be presumably never less than the asymptotic efficiency of corresponding parametric tests of Neyman's type [11]. This would extend the well-known result obtained by Chernoff and Savage [2] for the Student $t$-test. Furthermore, it is shown that the efficiency may be negative, i.e., asymptotic power may be less than the asymptotic size. In Section 7 we consider parallel rank-order tests of symmetry for judging paired comparisons. Section 8 is devoted to rank-order tests for densities such that $(f(x))^{\frac{1}{2}}$ does not possess a quadratically integrable derivative. In Section 9, we construct a test which is asymptotically most powerful simultaneously for all densities $f(x)$ such that $(f(x))^{\frac{1}{2}}$ possesses a quadratically integrable derivative.
Publié le : 1962-09-14
Classification: 
@article{1177704476,
     author = {Hajek, Jaroslav},
     title = {Asymptotically Most Powerful Rank-Order Tests},
     journal = {Ann. Math. Statist.},
     volume = {33},
     number = {4},
     year = {1962},
     pages = { 1124-1147},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1177704476}
}
Hajek, Jaroslav. Asymptotically Most Powerful Rank-Order Tests. Ann. Math. Statist., Tome 33 (1962) no. 4, pp.  1124-1147. http://gdmltest.u-ga.fr/item/1177704476/