It is shown that the mean of a normal distribution with unknown variance $\sigma^2$ may be estimated to lie within an interval of given fixed width at a prescribed confidence level using a procedure which overcomes ignorance about $\sigma^2$ with no more than a finite number of observations. That is, the expected sample size exceeds the (fixed) sample size one would use if $\sigma^2$ were known by a finite amount, the difference depending on the confidence level $\alpha$ but not depending on the values of the mean $\mu$, the variance $\sigma^2$ and the interval width $2d$. A number of unpublished results on the moments of the sample size are presented. Some do not depend on an assumption of normality.