A Remark on Nonatomic Measures
Rao, K. P. S. Bhaskara ; Rao, M. Bhaskara
Ann. Math. Statist., Tome 43 (1972) no. 6, p. 369-370 / Harvested from Project Euclid
In this paper the following result is proved: THEOREM. If $\lambda$ is a measure on a product $\sigma$-algebra $\mathfrak{U} \times \mathscr{B}$ and $\lambda_1$ and $\lambda_2$ are the corresponding marginals on $\mathfrak{U}$ and $\mathscr{B}$ respectively, then $\lambda$ is nonatomic $\operatorname{iff}$ at least one of $\lambda_1$ and $\lambda_2$ is nonatomic.
Publié le : 1972-02-14
Classification: 
@article{1177692735,
     author = {Rao, K. P. S. Bhaskara and Rao, M. Bhaskara},
     title = {A Remark on Nonatomic Measures},
     journal = {Ann. Math. Statist.},
     volume = {43},
     number = {6},
     year = {1972},
     pages = { 369-370},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1177692735}
}
Rao, K. P. S. Bhaskara; Rao, M. Bhaskara. A Remark on Nonatomic Measures. Ann. Math. Statist., Tome 43 (1972) no. 6, pp.  369-370. http://gdmltest.u-ga.fr/item/1177692735/