Uniform Integrability of Square Integrable Martingales
Isaacson, Dean
Ann. Math. Statist., Tome 43 (1972) no. 6, p. 688-689 / Harvested from Project Euclid
Let $(M_t, \mathscr{F}_t)_{t \geqq 0}$ be a continuous square integrable martingale and let $A_t$ be the natural increasing process in the Doob decomposition of $M_t^2$. Extending a result of Burgess Davis we show that there exist constants $C_1$ and $C_2$ such that $C_1 E\lbrack A_t^{\frac{1}{2}}\rbrack \leqq E\lbrack \sup_{s \leqq t} |M_s|\rbrack \leqq C_2 E\lbrack A_t^{\frac{1}{2}}\rbrack$ for all $t > 0$. Now if $A_\infty = \lim_{t\rightarrow \infty} A_t$, we find moment conditions on $A_\infty$ which relate to uniform integrability of $M_t$. In particular, $E\lbrack A_\infty^{\frac{1}{2}}\rbrack < \infty$ implies $M_t$ is uniformly integrable which implies $E\lbrack A_\infty^{1/\delta}\rbrack < \infty$ for all $\delta > 4$.
Publié le : 1972-04-14
Classification: 
@article{1177692656,
     author = {Isaacson, Dean},
     title = {Uniform Integrability of Square Integrable Martingales},
     journal = {Ann. Math. Statist.},
     volume = {43},
     number = {6},
     year = {1972},
     pages = { 688-689},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1177692656}
}
Isaacson, Dean. Uniform Integrability of Square Integrable Martingales. Ann. Math. Statist., Tome 43 (1972) no. 6, pp.  688-689. http://gdmltest.u-ga.fr/item/1177692656/